

Presented by: **Mike Slocum & Greg Tait** *E*³ Assessment & Evaluation Branch (Q52) ELECTROMAGNETIC & SENSOR SYSTEMS DEPARTMENT

Random Walk Technique: Measuring EME in Below-Deck Complex Cavities

22 August 2008

Statement A: Approved for Public Release; Distribution is unlimited. This brief is provided for information only and does not constitute a commitment on behalf of the U.S. Government to provide additional information or/and sale of the system.

Background – Evolution of Below-Deck Test

- > 60 spaces: Sacagawea, Battan, Iwo Jima
- Refinement of measurement techniques

New "Walk-Around" Measurement Method

- Comparison with other methods
- Validation
- Data analysis

Improved Command, Control & Communications

- Automation Provides.....
 - Better Process Control
 - Real Time Situational Awareness
 - Reduced Manning Capabilities

Wireless Interfaces Enhance Automation....

- Reduces Installation Costs
- Provides Greater Flexibility
- Allows Remote Monitoring & Control

AGNETIC & SENSOR SYSTEMS DEPART

AF Emissions Can Be Problematic

- Potential Issues With
 - HERO, EMI, EMC & Spectrum Usage
 - RF Emissions in Confined Spaces are Additive

Such Spaces Become Low-Power Microwave Ovens

- Reverberation Chamber / Complex Cavity Characterization Bounds The Problem
 - Gain Qualitative Understanding Spectrum Usage
 - Allows Prediction Of Potential EMI To Legacy Systems
 - Provides A Means To Assess Deployment Scenarios
 - Assures That Ordnance Safety Protocols Are Maintained

Below-Deck Spaces

ELECTROMAGNETIC & SENSOR SYSTEMS DEPARTMEN

T-AKE, LHD, CVN

- **M** Ordnance Magazine
- Pyrotechnics Storage
- **A** Operations Center
- **H** Electronics
- M Decks

Designated DoD HERO lead for AIT equipment

- **Mode Stir: Mechanical**
- **W** Volume Sample: Multiple Antenna Positions
- **Frequency Stir**
- **A Random Walk**

Origin

Continuous Location Field Mapping "Random Walk"

- Sweep RF Across Test Spectrum
- Transmit, Measure and Hold Maximum Value
- Walking Through Space
- Repeat 6 Times

A Reverberation Chamber Calibrations

- Provide Data On....
 - Resultant E-Field per Root Watt Input

Volumetric Uniformity

----- Standards Based Calibrations

- Pros
 - Gold Standard to Assess Other Techniques
- Cons
 - Interferes With Normal Operations
 - Requires ~1 Watt of Tx Power
 - Significant Equipment Requirement
 - Requires AC Line Power
 - Tuners, Power Meter, E-Field Probe,
 Spectrum Analyzer
 - Takes Approx. 40 Hours per Space

Multiple "Fixed" Location Field Mapping

- Sweep RF Across Test Spectrum
- Reposition Antennas (Tx & Rx)
- Repeat 12 Times

Technique Comparison

Fixed Location Calibrations

- Pros
 - Reduces Complexity of Test
 - Network Analyzer & Synthesizer
 - Reduces the Time Required
 - ~ Two Hours per Space
- Cons
 - Interferes With Normal Operations
 - Requires AC Line Power
 - More Sampling Would Improve Result

A Continuous Location Field Mapping

- Sweep RF Across Test Spectrum
- Transmit, Measure and Hold Maximum Value
- Walking Through Space
- Repeat 12 Times

Transmit and Receive Antennas >1000 MHz Handheld Spectrum Analyzer w/TG

A Continuous Location Calibrations

- Pros
 - Data Agrees Well With Standards Based Technique
 - Battery Powered
 - Eliminates Shipping Costs
 - Reduces Complexity of Test
 - One Unit Source & Receiver
 - Reduces the Time Required
 - $\sim \frac{1}{2}$ Hour per Space
- Cons
 - Limited Frequency Range

Characterization Results

ELECTROMAGNETIC & SENSOR SYSTEMS DEPARTMENT

HD 5, Bataan, Magazine 4

Characterization Results

ELECTROMAGNETIC & SENSOR SYSTEMS DEPARTMENT

BATAAN, LHD 5, Magazine 4

Frequency (MHz)

Characterization Results

ELECTROMAGNETIC & SENSOR SYSTEMS DEPARTMENT

BATAAN, LHD 5, Magazine 4

Spectrum Analyzer / Tracking Gen

Calibrated for Max. Dynamic Range 400 MHz \leq f \leq 4 GHz

Dual-Ridge Horn Antennas

Efficiency and AF Corrected in Post-Processing

4 12 Runs, Max Hold I.L. Add'I Sampling with Frequency Sweep

- ♣ Large D > λ: Overmoded
- Reflective: Chaotic or Diffuse Field
- Deterministic Solution:
 Neither practical nor useful
- A Statistical Analysis:

Predict Avg & Max Field Within Specified Uncertainty

Unloaded Quality Factor:

$$Q = \omega \tau \cong 3 \frac{Vol}{SurfaceArea} \sqrt{\frac{\sigma}{\mu_r}} \sqrt{f(MHz)}$$

$$I.L. = const. \frac{\sqrt{\frac{\sigma}{\mu_r}}}{Surface Area} \frac{\xi_{max/mean}(f)}{f^{5/2}}$$

Critical Distance:

$$R_C = \sqrt{\frac{1}{2\pi} D_{tx} D_{rx} \frac{vol}{c\tau}}$$

$$E_{Max} = \frac{8\pi}{\lambda} \sqrt{\frac{5 \cdot P_{\max, rec}}{\eta_{rx}}}$$

$$CCF \equiv Normalized E_{Max} = \frac{E_{Max}}{\sqrt{P_{input}}} = \frac{8\pi}{\lambda} \sqrt{\frac{5 \cdot IL}{\eta_{rx}}}$$

Diffuse-Field Dominant

$$E_{\max} \cong CCF \cdot \sqrt{P_{input}}$$

NAVSEA OP 3565

$$E_{\text{max}}^{HERO} = 0.00625 \cdot f(MHz) \qquad (V/m)$$

EME at 915 MHz

H EME in Reverberant Spaces Influenced By:

- Frequency
- Volume and Surface Area
- Wall Effective Conductivities (σ/μ_r)
- Space Functionality (Size and Loading)
- Leakage via Large Apertures

Aircraft, and Bunker Cavities

 Maximum Diffuse Electric Fields Can Be Estimated Using a Cavity Calibration Factor

Potential Problems

– EMI, EMV, HERO

- Maximum power density data
- **At 1 Frequency: 12 Max Values**
- Augment Samples: Frequency BW
 e.g. 4 adjacent frequencies (12 MHz separation)
- **4** 60 Max data points: Mean and STD
- Work statistics "backwards"
- **P**_{max} , P_{avg} , E_{max} , E_{avg} & associated uncertainties

Statistical Analysis

Some "details"

$$w = \frac{P_{max}}{\langle P \rangle} \quad Max-to-Mean Power Ratio$$

$$\langle w \rangle \equiv \int_{0}^{\infty} w f_{N}(w) dw = \langle P_{max} \rangle / \langle P \rangle$$

$$\langle w^{2} \rangle - \langle w \rangle^{2} \equiv \int_{0}^{\infty} w^{2} f_{N}(w) dw - \left(\int_{0}^{\infty} w f_{N}(w) dw\right)^{2} = S_{Pmax}^{2} / \langle P \rangle^{2}$$
Measured Data

$$I(N) \equiv \frac{\int_{0}^{\infty} w^{2} f_{N}(w) dw}{\left[\int_{0}^{\infty} w f_{N}(w) dw\right]^{2}} = 1 + S_{n}^{2}$$

$$f_{N}(w) = N \exp\{-w\} [1 - \exp\{-w\}]^{N-1}$$
Equivalent Number of Independent Samples

Statistical Analysis

Statistical Analysis

Comparison of Techniques at 2 GHz in Reverberation Chamber (power units are dB or dBm as appropriate)

	Measured Data			Statistical Inference					
Tuner Sweep	P _{max} (single value)	<p></p>	P _{max} / <p></p>	Ν	$\sigma_{<\!P\!>}$	<p<sub>max>/<p></p></p<sub>	$\sigma_{Pmax/\!<\!P\!>}$	<p<sub>max></p<sub>	$\sigma_{}$
•	-23.3	-31.0	6.9	188	0.4	7.5	1.0	-23.5	1.1
Random Walk	<p<sub>max></p<sub>	S _{Pmax}	S _n (linear units)	N	$\sigma_{}$	<p<sub>max>/<p></p></p<sub>	$\sigma_{Pmax/\!\!<\!P\!\!>}$	<p></p>	$\sigma_{<\!P\!>}$
	-23.3	0.7	0.168	1140	0.1	8.8	0.7	-32.1	0.7

Conclusions

Walk-Around Technique

- Methodology of choice
 - Equal or better accuracy
 - Significant reduction in time/cost
 - Simplifies evaluations
 - Little training required

AIT systems can pose E³ Risks....

- Consideration must be given to:
 - HERO & EMI
 - Need to balance deployment with ROI