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Abstract: Reciprocity theorems for electrical networks 
and electromagnetic fields allow us to better understand 
the mechanisms that play a role in EMC measurements 
or to facilitate EMC measurements. This tutorial paper 
presents the theorems and their accompanying 
mathematical relations. Quite a number of rather simple 
but relevant examples demonstrate their usefulness in 
the field of transfer function and conversion 
measurements, antenna factors, radiated emission and 
immunity measurements, and shielding effectiveness.  
 

1. Introduction 
In 1928 the radio pioneer Stuart Ballantine wrote: 
“Among the tools of thought and artifices by which man 
forces his mind to give him more service, perhaps the 
most intensely useful are the simple mathematical rules 
of inversion known as reciprocity theorems” [1]. His 
words have not lost their meaning today. This paper 
aims to present reciprocity theorems useful in the field 
of EMC measurements in a tutorial way, that is limiting 
the theory to a level that allows a reasonable 
understanding of the relations used in the applications. 
We also present quite a number of rather simple 
applications to demonstrate the service given by these 
theorems.  

The reciprocity theorems discussed here are in no 
way new and in a tutorial paper it can do no harm to 
mention several of the original (historical) publications, 
particularly since these publications offer the reader 
quite interesting discussions about the ‘ins and outs’ of 
these theorems. There are some famous names 
connected with the reciprocity theorems for use in 
experimental physics, in this case EMC measurements. 
In experimental physics, perhaps the earliest theorem is 
that about the reversibility of light rays, published in 
1866 by Hermann von Helmholtz in his famous 
Handbuch der Physiologischen Optik [2]. This theorem 
springs to mind when considering the reciprocity of 
shielding effectiveness. 

In 1877 Lord Rayleigh published his theorem 
dealing with electrical networks in his famous book The 
Theory of Sound [3]. This theorem is of importance 
when transfer functions (transfer impedance, filter 
attenuation, site attenuation, etc.) of linear passive 
networks have to be measured (Sections 2 and 3).  

The reciprocity theorem for electromagnetic fields 
(Section 4) was formulated in 1895 by Hendrik Antoon 
Lorentz (Nobel Prize winner in 1905) [4, 5] and then 
seemingly almost forgotten for quite some time. 
Following Guglielmo Marconi’s success in 1895 in 
demonstrating the possibility of sending and receiving 
signals using electromagnetic waves, radio communic-
ation research boomed. A reciprocity theorem for 
electromagnetic fields was very much needed, particul-
arly to understand the behaviour of transmitting and 
receiving antennas. As ‘Necessity is the Mother of 
Invention’, John R. Carson of Bell Labs ‘re-invented’ 
the theorem in 1924 [6] as did H. Pfrang in his Ph.D. 
thesis in Germany in 1925. Pfrang’s  results were used 
by his professor Arnold Sommerfeld in a publication in 
1925 [7], where Sommerfeld also writes: “My friend M. 
von Laue (Nobel Prize winner in 1918, author’s note) 
raised the surmise that this theorem could be found in 
the early work of H.A. Lorentz about electromagnetic 
waves. It indeed turned out that exactly 30 years ago 
Lorentz has published a beautiful and general theorem 
from which Pfrang’s results can easily be derived.” The 
‘connection’ between the field reciprocity theorems 
formulated by Lorentz, Carson and Sommerfeld-Pfrang 
was made by Ballantine in 1928 [1].  

Today, Lorentz’s original publication is rather 
difficult to read since vector analysis had yet to be 
‘invented’ in 1895, making his notation rather difficult 
to understand. In 1921, M. Abraham published his book 
Theorie der Elektrizität [8] the first chapter of which, 
written by A. Föppl, is devoted to vector analysis. It is 
most interesting to read Abraham’s arguments in the 
introduction to his book of why vector analysis should 
be used in electromagnetic theory. Although the book 
was written in German, it is very clear from the many 
references made to this book that there was no language 
problem in the old days and, furthermore, that vector 
analysis was (and still is) a very useful tool, also used 
by Lorentz in his later publications [5]. Still, in the 
1920’s vector analysis was quite new and in [6] Carson 
writes in a foot note: “In the following proof it is 
necessary to assume a knowledge on the part of the 
reader of the elements of vector analysis; the notation is 
that employed by Abraham”. Today the publications by 
Carson, Ballantine and Sommerfeld are quite readable if 
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you bear in mind that in their days the system of units 
was not the same as our current system.  

Ballantine, whose name lives on in the Stuart 
Ballantine Medal [9], published a most important 
application of the field reciprocity theorem [10], 
referring to important work carried out by Raymond M. 
Wilmotte [11] of the National Physics Laboratory in the 
U.K. (Section 5). As we will show below, this 
application leads to a hybrid reciprocity theorem that is 
of importance when considering antenna factors, 
radiated emission and immunity measurements, shield-
ing effectiveness and uncertainties in EMC measure-
ments (Section 6). Here the meaning of ‘hybrid’ is that, 
mathematically, the theorem is expressed in terms of 
voltage and current, on the one hand, and in electric and 
magnetic field components, on the other hand. 

More recent literature on these reciprocity theorems 
can be found in [12−15], for example, where due 
attention is given to the mathematics. A contemporary 
derivation of the hybrid reciprocity theorem used in this 
paper can be found in [16], for example. The material 
presented here was published earlier in Dutch, in a 
series of short articles in the journal of the Dutch 
EMC/ESD Society [17].  

 
2. Kirchhoff networks 

This section considers quasi-stationary linear passive 
electrical networks that do not contain devices that 
make use of the properties of magnetized ferrites, such 
as circulators. If electric and magnetic fields play a role, 
their action is contained in lumped elements and/or 
network parameters that describe field coupling such as 
the mutual inductance. In other words, we consider 
networks that obey the two Kirchhoff laws, so that in 
the remainder of this paper we will refer to these 
networks as Kirchhoff networks. The reciprocity 
theorem discussed here interrelates two states of one 
and the same Kirchhoff network, where the states are 
determined by the terminations of that network. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Network to illustrate the reciprocity theorem.  
(a) e.m.f. Ug at A and current measurement at B, (b) 

e.m.f. Ug at B and current measurement at A.  
 
Lord Rayleigh, who formulated his reciprocity theorem 
rather generally in terms of forces and motions, presents 
various applications [3] and writes:  

“A further example may be taken from electricity. 
Let there be two circuits of insulated wire A and B 
and in their neighborhood any combination of wire 
circuits or solid conductors in communication with 

condensers. A periodic electromotive force in the 
circuit A will give rise to the same current in B as 
would be excited in A if the electromotive force 
operated in B”. 

This formulation hardly differs from that used today 
when introducing this reciprocity theorem, normally 
referring to the two circuits shown in Fig.1: 

‘If an e.m.f. Ug at the location A in a Kirchhoff 
network causes a current I2

a to flow at point B in that 
network then a current I1

b= I2
a will flow in point A 

after placing the e.m.f. Ug at the location B in that 
network.’  

The superscripts a and b refer to the two states depicted 
in Figs. 1a and 1b. In more extended networks more 
than one e.m.f. may be present that also contribute to 
the current in the considered point. The theorem, 
however, only applies to that part of the current that is 
caused by the considered e.m.f.. It is very easy to verify 
that I1

b= I2
a by calculating both currents. It then follows 

that 
 

(1) 
 
 
The given formulation of the reciprocity theorem is true 
enough but it is not very suited for use in further 
considerations. The step is therefore made to the general 
expression that describes the reciprocity of an N-port 
Kirchhoff network. As proven in [6, 18]  
 

(2) 
 
where, again, the superscripts a and b correspond to two 
states that are determined by the terminations of the 
network and can be chosen arbitrarily within the 
conditions that apply. Equation (2) contains combi-
nations of the voltages in one state (a or b) and the 
currents in the other state (b or a). As such, Eq.(2) has 
little to say. It only comes alive when N and the states a 
and b have been chosen. Before doing so, Eq.(2) is 
checked (not proven), in particular because the ‘recipe’ 
used shows great similarities with the one used in the 
derivation of the expression describing the reciprocity 
theorem for electromagnetic fields (see also Eq.(24)).  

The most simple network is a one-port (N= 1) 
formed by an impedance Z. In such a case Eq.(2) 
reduces to U1

aI1
b= U1

bI1
a and the correctness of this 

equation can be verified in a rather trivial way. Assume 
in the a-state the voltage across Z is given by U1

a= ZI1
a, 

and in the b-state by U1
b= ZI1

b. The left and right hand 
member of the first equation are now multiplied by I1

b 
so that U1

aI1
b= ZI1

aI1
b and, equally, the second one by I1

a 
so that U1

bI1
a= ZI1

bI1
a. Subtracting the second equation 

from the first one yields the relation being 
demonstrated: U1

aI1
b= U1

bI1
a. 

To check the general expression, Eq.(2) is first 
written in vector/matrix form 

 
(3) 

 
where the subscript T denotes the transposed matrix. In 
this notation, Ohm’s law leads to [Ua]= [Z][Ia] in the a-
state and to [Ub]= [Z][Ib] in the b-state. In a similar way 
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as with the one-port, the first equation is multiplied by 
[Ib]T and the second one by [Ia]T. The result of these 
multiplications is (note that the order of the terms is 
now always of importance) 
 

(4a) 
and  

(4b) 
 
where in Eq.(4b) we have made use of the matrix 
property [X]T[Y]T[Z]T= {[Z][Y][X]}T.  If [Z]= [Z]T, as is 
the case in an N-port Kirchhoff network, Eq.(3) and 
hence Eq.(2) directly follow after subtracting Eq.(4b) 
from Eq.(4a).  
 

3. Applications (1) 
This section presents four examples that connect the 
reciprocity theorem for Kirchhoff networks to EMC-
measurements. The examples pay particular attention to 
the transfer impedance, filter attenuation, the conversion 
of a differential-mode (DM) voltage into a common-
mode (CM) current and to site attenuation. In all 
examples Fig.2 applies and N= 2, but the applications 
are not limited to N= 2. For example, if cross-talk 
between parallel lines is considered, N= 3 or even 
higher may give useful information. 
 
 

 
 
 
 
 
 

Fig.2 A two-port Kirchhoff network with a termination 
at each port that depends on the chosen 
application. 

 
If N= 2, Eq.(2) reduces to 
 

(5) 
 
In fact in Fig.1 N= 2 also applies. There U1

b= U2
a= 0 

and U1
a= U2

b= Ug and substitution into Eq.(5) shows 
again that I1

b= I2
a. 

 
3.1 Transfer impedance 
The transfer impedance is the ratio of the voltage 
(e.m.f.) induced in a current loop by the current in 
another current loop. A typical example is the cable 
transfer impedance that characterizes the EMC behav-
iour of a cable (the cable ‘leakage’).  
 
 
 
 
 
 
 
 
Fig.3  The two states when discussing the transfer 

impedance 
 

When applying Eq.(5), the termination at port 1 (see 
Fig.3) in the a-state is a current source of strength I1

a 
and port 2 is open circuited, i.e. I2

a= 0. In the b-state, a 
current source I2

b terminates port 2 while port 1 is open 
circuited, i.e. I1

b= 0. Hence, Eq.(5) reduces to U2
aI2

b= 
U1

bI1
a or, expressed in the transfer impedances Z12 and 

Z21 
 

(6) 
 
So the cable transfer impedance is reciprocal if the cable 
behaves as a Kirchhoff network. The cable is always 
passive and is always linear at most practical signal 
levels, as long there is no magnetic material in the cable 
construction. If magnetic material is used, the current 
(e.g. the CM current on the cable) must be verified to 
make sure that it is so low that no saturation of the 
magnetic material results. When measuring the transfer 
impedance it is often very difficult, if not impossible, to 
sufficiently satisfy the condition I1

b= 0 or I2
a= 0 at high 

frequencies, so that the measurement result has to be 
corrected for this non-zero current effect. Section 6.7 on 
interference prediction demonstrates another application 
of the transfer impedance concept. 
 
3.2. Filter attenuation 
In the case of filter attenuation measurements, a source 
(e.m.f. Ug, internal impedance Zg) is connected via a 
filter to the load impedance ZL. A well known question 
related to filter attenuation is: ‘Does it matter which of 
the filter ports is connected to the source  and which 
port is connected to the load of that source?’ If the filter 
itself is not purely symmetrical, the EMC engineer will 
answer that question with ‘Yes’, although he or she will 
not be able to demonstrate this using a 50Ω measuring 
system (generator and voltmeter having equal 
impedances, e.g. Zg= ZL= 50Ω). The latter can be 
verified as detailed below. 
 
 
 
 
 
 
 
Fig.4 The two states when discussing the filter 

attenuation 
 
Assume that in the a-state port 1 is terminated by the 
source and port 2 by the load, and the reverse 
termination holds in state b (see Fig.4). If U0 is the 
voltage across ZL in the absence of the filter, the filter 
attenuation Aa= U2

a/U0 in the a-state and Ab= U1
b/U0 in 

the b-state. So here it is relevant to consider the ratio 
Aa/Ab= U2

a/U1
b. At the terminations the following 

relations are valid 
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From Eqs.(7c) and (7d) it follows that U2
a/U1

b= I2
a/I1

b 
and Eqs.(5) and (7) yield 
 
 

(8) 
 
The attenuation will be independent of the choice of 
source port and load port if Aa/Ab= 1. In all other cases 
Aa/Ab≠ 1 and relative impedance values will determine 
the choice of the source and load port of the filter [19].  

The condition Aa/Ab= U2
a/U1

b=  I2
a/I1

b= 1 is met if 
I2

b=I1
a and/or Zg= ZL. It is well known that the condition 

I2
b= I1

a, that simultaneously makes I2
a= I1

b, is met in the 
case of a purely symmetrical filter; the reciprocity 
theorem was not needed to demonstrate this. However, 
the condition Zg= ZL resulting in Aa/Ab= 1 is sometimes 
overlooked as noted in Section 6.3. Moreover, it is this 
condition that explains why the engineer will measure 
no difference in the attenuation if source and load port 
are interchanged when using a 50Ω measuring system.  

Of course, another path could also have been 
followed to arrive at the two conditions representing 
Aa= Ab. The Kirchhoff network can be characterized by 
a T-network and U2

a/U1
b can be expressed in the 

network impedances Z1, Z2 and Z3 (see Fig.1). After 
straight forward calculations it then follows that 
 

(9) 
 
 
where Z2= Z1Z2+Z2Z3+Z3Z1+Z3Zg+ZgZL+Z3ZL. The con-
dition Z1= Z2 then represents the purely symmetrical 
filter and, again, the condition Zg= ZL represents the 
50Ω measuring system.  
 
3.3. DM/CM conversion 
The application of a reciprocity theorem may change an 
unsuccessful measurement into a successful one. An 
example is the measurement of the conversion of a 
differential-mode (DM) voltage into a common-mode 
(CM) current to characterize the emission properties of 
a telephone subscriber line or a power line to which a 
digital-signal is applied. The DM voltage UDM is 
supplied by the digital signal, and the resulting CM 
current ICM is a direct measure of the radiated emission 
capability of such a line. This measure can be expressed 
in a conversion admittance YCM= ICM/UDM.  

To measure this conversion over a certain frequency 
range, e.g. 0.1 MHz − 30 MHz, it seems rather obvious 
to apply a DM voltage to the line and to measure the 
resulting CM current. However, the line is also a 
relatively efficient receiving antenna and ambient fields 
will induce CM currents that may be of the same order 
of magnitude as the CM currents being measured, or 
possibly even larger. Another problem might be the 
correct measurement of a DM voltage at the higher end 
of the frequency range. Both problems can be 
circumvented by applying a CM voltage UCM to the line 
and measuring the resulting DM current IDM, i.e. by 
determining the conversion admittance YDM= IDM/UCM. 
The reciprocity theorem can now be used to find the 
condition leading to YCM= YDM.  

 

 
 
 
 
 
 
 

 
Fig.5 The two states when discussing the DM/CM 

conversion 
 
The line being characterized can be considered as a two-
port network where port 1 is the CM port and port 2 the 
DM port, see Fig.5. The following choice of 
terminations in the a- and b-state is now possible. In 
state a, representing the determination of YDM, port 1 is 
terminated by the voltage generator and a high 
impedance FET probe measures U1

a= UCM. Port 2 is 
short-circuited (U2

a= UDM= 0) and a current probe 
around the short circuit measures I2

a= IDM. In state b, 
representing the determination of YCM, port 2 is 
terminated by the generator and port 1 by the short 
circuit. In this case Eq.(5) reduces to U1

aI1
b= U2

bI2
a, so 

that 
 

(10) 
 
 
A practical way of measuring YDM is to use Mac-
farlane’s probe [20]. As described in [21], the CM 
voltage is applied to the CM input of the probe. The 
voltage is measured via a high impedance FET probe at 
this input and the current is measured in the short circuit 
between the probe’s two DM terminals. Reference [21] 
also gives measured YDM data. 
 
3.4. Site attenuation 
Although only voltages and currents have been 
considered above, it does not mean that the reciprocity 
theorem does not apply if electric and magnetic fields 
play a role in the signal transfer. This should already be 
clear from the given examples, as field couplings play 
an important role in each of these examples.  

Another example is the determination of the site 
attenuation in which the signal transfer between two 
antennas above a reflecting plane is considered. 
Fortunately, the signal transfer can be modelled into a 
passive two-port network [22] containing linear 
impedances as already described by Brown and King in 
1934 [23]. Using a 50Ω measuring system, we can 
conclude from the discussion in Section 3.2 that it is not 
important which port is connected to the generator and 
which one to the receiver as long as the antennas have 
fixed positions. However, as noted in Section 6.2,  this 
conclusion might not always be correct if the so-called 
normalized site attenuation is considered 
 

4. Electromagnetic fields 
This section considers the Lorentz reciprocity theorem 
interrelating the electromagnetic fields in two states that 
can occur in one and the same domain in space. Using 
Carson’s formulation [24] and today’s notation  the 
reciprocity theorem for fields reads: 
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“If Ea, Ha are the field vectors due to a periodic 
disturbance from a source A1 located at O1 and Eb, Hb 
are the corresponding field vectors due to a 
disturbance originating in A2 from a source located at 
O2, then 

 
(11) 

 
the surface integrals as indicated by the subscripts 1+2 
being taken over closed surfaces 1 and 2 surrounding 
the sources A1 and A2 respectively.”  

Not directly given in [24] is the additional equality also 
following from the reciprocity considerations 
 

(12) 
 
 
where D is the volume containing the sources A1 and A2 
represented by the source vectors Ja and Jb, res-
pectively. In Eq.(11) the surface of D is indicated by the 
subscripts 1+2. Equation (12) will be used in the 
derivation of the hybrid reciprocity theorem in Section 
5. As will be noted below, Eqs.(11) and (12) are 
connected to a special case of the general reciprocity 
relation Eq.(19).  

So the theorem combines two field states (a and b), 
comparable to the discussed reciprocity theorem for an 
N-port Kirchhoff network. The derivation of Eqs. (11) 
and (12) starts from sets of two Maxwell’s equations 
expressed in the frequency domain for the states a and 
b:  

 
 (13a,b) 

 
and   
 

(14a,b) 
 
Now the trick is to remember the existence of the vector 
relation div(X×Y)=Y⋅curlX−X⋅curlY and to write 

 
(15) 

 
(16) 

 
An expression for Hb⋅curlEa in Eq.(15) can be found by 
multiplying the left and right hand members of Eq.(13a) 
by Hb (be careful with the order of the variables) 

 
(17) 

 
In a similar way, expressions can be found for the other 
terms on the right hand side of Eqs.(15) and (16) by 
multiplying Eqs.(13b), (14a) and (14b) by the proper 
vectors. After substitution of all resulting expressions in 
Eqs.(15) and (16) and subtracting the two final 
equations, we find that 

 
(18) 

 
This equation, in which the ω-terms no longer appear, is 
sometimes called the local form of the reciprocity 
theorem. To find the general form, Eq.(18) has to be 

integrated over the volume D containing all sources 
represented by Ja and Jb, yielding  
 
 

 
(19) 

 
 
 
 
 
We had to expect an integration as the Maxwell equat-
ions consider field derivatives whereas an expression 
for the fields is needed. The most left hand member of 
Eq.(19) has been converted from an integral over a 
volume D into an integral over the surface S of D by 
applying Gauss’s theorem. This action also ‘removes’ 
the div operation. Equation (19) is the general form of 
the Lorentz reciprocity theorem, a form that can even be 
extended [14], although this extension is not needed in 
the context of this paper. 

A special case is the situation in which the relation 
between the E and the H vector of the field is fixed, 
such as in the far-field of an antenna. Then the outcome 
of the integrals in Eq.(19) is equal to zero, a value given 
by Lorentz as he considered the propagation properties 
of light. In the far-field, the field propagates as a plane 
or quasi-plane wave so that the E and the H vector of 
the field are perpendicular to each other and have a 
constant ratio, η=√(µ/ε), the wave impedance (377 Ω in 
air). In vector notation the latter means that ν×E= ηH, 
where ν is the unit vector perpendicular to the plane 
formed by E and H. After application of this relation to 
Ea×Hb and to Eb×Ha and after application of the vector 
relation X×(Y×Z)= Y⋅(X⋅Z)−Z(X⋅Y) we find that 

  
(20) 

 
so that abba HEHE ×−× = 0 and, consequently, 
the integrals in Eq.(19) are equal to zero and Eqs.(11) 
and (12) given at the start of this section automatically 
follow.  
 

5. The hybrid reciprocity theorem 
The experimentalist can only humbly lift his hat at the 
mathematical fireworks presented in Section 4 and then 
pass to the order of the day. An application is what is 
needed to catch his or her interest. As mentioned in the 
introduction, a very useful application was already 
given in 1929 by Ballantine [10], referring to the work 
of Wilmotte [11].This application, resulting in the 
hybrid reciprocity theorem, can also be found in Section 
4.5 of a more recent textbook [16]. The theorem gives 
an expression for the voltage Ui induced by an incident 
field Ei in an antenna or structure acting as an antenna, 
e.g. an EUT (Equipment Under Test) and its connected 
cables. Since the transmission and reception of 
electromagnetic waves is of interest in EMC field 
measurements, the two states a and b will now be 
denoted by t (of transmission) and r (of reception). 

In the following, two wire antennas A1 and A2 are 
considered (see Fig.6). Each wire antenna consists of 
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Fig.6 The states (a) transmission and (b) reception. The 

dashed lines indicate parts that need not 
necessarily be accessible. 

 
two wire elements, separated by a small gap of width w, 
that determines the distance between the two terminals 
(each connected to a wire element) of the antenna. The 
wire antennas of total length L1 and L2 are assumed to 
be electrically thin and perfectly conducting. The width 
w<<{L1, L2} is so small that a quasi-stationary approach 
is allowed at the gap, i.e. it is assumed that the time 
derivative in Faraday’s law can be taken equal to zero. 
In other words: the wire elements are connected to a 
Kirchhoff network.  

Figure 6a depicts the t-state: A1 is the transmitting 
antenna to which a current source of strength I0 is 
connected. This results in a current distribution It over 
A1, and an incident field Et at the location of A2. The 
open circuit voltage induced in the latter antenna is 
Ui,A2. The r-state is considered in Fig.6b: the current 
source I0 is connected to the terminals of A2, creating a 
Er at the location of A1, in which antenna an open circuit 
voltage Ui is induced. The task now is to derive an 
expression for Ui. 

If we realize that within the volume D in Eq.(12) the 
current can only flow on the wire elements, Jdv in that 
equation can be replaced by I(l)dl. The current I(l) is the 
current (perfect conductor) uniformly distributed over 
the infinitesimal wire segment dl at the position l along 
the wire element. The segment has a certain orientation 
with respect to the incident field, so dl is a vector. 
Moreover, the volume integral in Eq.(12) now changes 
into a line integral, so that   
 

(21) 
 
 
The outcome of the integrals equals zero because either 
the current is zero (in the gap) or the dot product E⋅dl is 
zero because the tangential field on a perfect conductor 
is always zero. In such a conductor the internal E-field 

is always zero and the boundary condition states that 
also the E-field just outside the conductor is zero. In 
other words, at the surface of the wire element, the 
component of the incident field parallel to that element 
contributing to Ui, i.e. Eidl, is always cancelled by the 
reflected or scattered field Es where Esdl= −Eidl.  So, if 
all elementary wire segments were replaced by 
elementary sources Es⋅dl, the total field distribution 
outside the wire elements would not change [16]. In the 
assumed quasi-stationary situation, the voltage Ui is 
equal to the line integral of the field over the gap w, 
while in the t-state the gap current equals I0. Using these 
results, the left hand member of Eq.(21) can be written 
as 
 

 
(22) 

 
 
so that 

 
(23) 

 
 
and this relation derived from the Lorentz reciprocity 
theorem clearly demonstrates its hybrid character. In a 
general approach, it can be shown that under certain 
conditions the reciprocity theorem for the Kirchhoff 
networks, Eq.(2) can be derived from the Lorentz 
reciprocity theorem and the following relation holds  
[14, 15] 
 
 
 

(24) 
 
 
 
 
This means that there is a direct link between the 
Maxwell equations and the reciprocity theorem for 
Kirchhoff networks and that we no longer have to think 
in terms of electrical forces and motions, as was 
common in Rayleigh’s days. 

Some general observations can be made from 
Eq.(23): 
a) Of the fields, only the incident field counts!  
b) The equation only contains parameters that apply to 

antenna A1 or to the location of A1. No information 
is needed about ‘where is antenna A2 causing the 
incident field Ei’ or about ‘what happens in antenna 
A2’. This is indicated schematically in Fig.6 by the 
dashed lines.  

c) Up to this point we have tacitly assumed that all 
ports of a network are accessible for (simultaneous) 
connection of terminations (of measuring 
equipment). Equation (23) can look at a situation in 
which only one port is accessible. 

d) The equation meets the demands of an experiment-
alist who is never able to directly measure the field 
strength. He or she always needs a conversion of a 
field strength quantity into a quantity that can be 
measured via conduction. 
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e) Equation (23) can also be written as 
 

 (25) 
 

 
so that It(l)/I0 can be considered to be the normalized 
current distribution in the transmitting state that weighs 
the contributions of incident field in the receiving state. 
 
 

6. Applications (2) 
This section presents a number of simple applications of 
Eq.(23) or Eq.(25), dealing with the antenna factor, 
radiated immunity measurements and shielding. 
Interesting and rigorously treated applications of 
Eq.(24) can be found in [15, 25]. Only in simple cases 
can the integral in Eq.(23) or Eq.(25) be solved 
analytically; an example is given in Section 6.1. 
However, the other examples will show that quite useful 
information is made available without solving the 
integral.  
 
6.1. The λ/2-dipole  
A very simple application of Eq.(25) follows if we 
calculate the voltage induced in a λ/2-dipole in free 
space. As can be found in all current text books on 
antennas and was verified experimentally by Wilmotte 
in 1927 [26], the current distribution in the transmitting 
state of this antenna is half a sine wave. If the incident 
field is a plane wave of strength Ei with its polarization 
parallel to the wire elements, the well known expression 
for the induced voltage follows from Eq.(25):  
 

 
(26) 

 
 
If Zm is the effective load impedance and Za the internal 
impedance of the λ/2-dipole antenna, the voltage Um 
measured by the receiver is given by 
 

(27) 
 
 
and if Ei= Ec

i is the field strength during calibration of 
this antenna, its antenna factor FA is given by 
 

(28) 
 
 
By stating ‘Zm is the effective load impedance of the 
antenna’ and not ‘Zm is the input impedance of the 
receiver’, the properties of the antenna balun are 
assumed to be taken into account.  

Seibersdorf, for example, is a supplier of a set of 27 
λ/2-dipole antennas suitable for performing the 
validation of an antenna calibration test site as described 
by CISPR/A [27]. For these antennas Zm= 100 Ω, and 
the free space value of Za= 73 Ω.  Inserting these values 
in Eq.(28) results in FA values that differ less than 0.1 
dB from the theoretical values supplied by Seibersdorf 
(maybe, Seibersdorf also used Eq.(28)). 

6.2. The antenna factor FA 
This section should clarify which parameters play a role 
in the determination of the antenna factor and what the 
consequences are in radiated emission measurements, 
measurement uncertainty and normalized site 
attenuation measurements. 

By definition, the measured field strength Em= 
FAUm, so the antenna factor can be written as  

 
 

(29) 
 
 
 
The antenna factor therefore depends on 3 variables 
determined by the calibration set-up, in Eq.(29) 
indicated by the subscript c, 
  1) The antenna impedance Za,c, 
  2) The normalized current distribution Ic

t(l)/I0, and 
  3) The outcome of the dot-product Ec

i⋅dl along the 
wire elements. 

As a consequence, if in a radiated emission measure-
ment one or more of these three variables differ from 
the values during calibration, the antenna factor is 
unknown. In discussions about the standardization of 
radiated emission tests, the first variable (the antenna 
impedance) has often been considered, but not the other 
two variables.  

The normalized current distribution depends on the 
interaction of the antenna with its environment during 
its actual use (calibration or radiated emission test). Of 
course, the outcome of the integral depends on the 
incident-field distribution which, however, is not 
specified in a radiated emission compliance test. The 
wire elements of a receiving antenna automatically 
‘integrate’ over the field distribution whether the 
measurement is carried out on an open area test site, or 
in a semi or a fully anechoic room. Consequently, 
antennas with different shapes will have different 
induced voltages, even if the incident field is a plane 
wave. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 7. The difference ∆FA= FA(ANSI/3m)−FA(Free-

Space) between the antenna factors of a log-
biconical antenna derived from the two 
calibration reports 

 
The combined effect of all three variables comes to the 
fore in the first example. Figure 7 shows the difference 
∆FA between the ANSI(3m) antenna factor and the free-
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space antenna factor of one and the same log-biconical 
antenna, as determined by a UKAS accredited company.  

We can also conclude from the above that the 
linearized model used in documents on EMC 
measurement instrumentation uncertainties [28, 29] 
cannot be justified. Moreover, the uncertainty in the 
antenna factor during calibration has little in common 
with the uncertainty in the antenna factor during an 
actual radiated emission test. In the normalized site 
attenuation measurement method the result of the site 
attenuation measurement is normalized to the antenna 
factors, after which the result is compared to a 
theoretically predicted result. This method is formally 
only correct if it can be demonstrated that the antenna 
factors used are valid during the conditions of the site 
attenuation measurement.  

As a second example, Fig.8 shows the difference 
dEmax when in the CISPR/A radiated emission round 
robin test (RRT) the field-strength emitted by the 
battery operated tightly specified EUT (a rod antenna 
above a small ground plane) was firstly measured using 
a biconical antenna and secondly by using a log-
biconical antenna [30]. When replacing the receiving 
antenna, care was taken that the remaining part of the 
set-up was not changed. Only the prescribed 
measurement distance was adjusted by moving the 
receiving antenna. In this example, the effect of 
integrating over different parts of the incident field 
distribution comes to the fore very clear. This effect was 
also found in the statistical evaluation of the RRT field 
strength measurement results using the tightly specified 
EUT [30].  

 
 
 

 
 
 
 
 

 
 

Fig.8  Measured field strength difference dEmax (dB) 
after  a biconical antenna has been replaced by a 
log-biconical antenna 

 
When using a log-biconical antenna, the effective 
measurement distance changes with frequency, and it 
has sometimes been suggested that is possible to correct 
for this effect. From the theory above, it will be clear 
that such a correction is only possible if the complete 
actual incident-field distribution is known and 
accounted for in the correction factor. 
 
6.3. Probe calibration in a TEM cell 
Field probes are often calibrated in a TEM-cell. How-
ever, the practical use of these probes is generally 
outside such a cell. So the current distribution in the t-
state, and, consequently, the antenna factor, may be 
different in cases where the probe is not as close to the 
metal plates as it is inside the TEM-cell. It seems that 
this aspect was overlooked in [31]. It might therefore be 
one of the reasons for the limited agreement between 

measurement results obtained in the TEM cell and those 
obtained outside that cell. In addition, the authors in 
[31] claim that the reciprocity of the TEM cell was 
verified experimentally. In that experiment, a first 
transfer function was measured after connecting the 
signal generator to the probe acting as transmitting 
antenna inside the cell and the measuring receiver to 
one of the cell terminals. A second transfer function was 
measured after reversing the connections, i.e. after 
connecting the generator to the cell terminal and the 
measuring receiver to the probe. They then conclude 
that reciprocity has been demonstrated as the two 
transfer functions differed by less than 1 dB. However, 
for trivial reasons the TEM cell was a linear passive 
device and, hence, was reciprocal. The discussions in 
Section 3.2 then indicate that the experiment only 
demonstrated that the ratio of the output impedance of 
the generator and the input impedance of the measuring 
receiver was smaller than 1 dB. If a 50Ω generator and a 
75Ω measuring receiver would have been used, for ex-
ample, that ratio would most likely have been different 
and the authors would have discovered that their method 
needed an additional consideration. 

Another application of the reciprocity theorem in-
volving a TEM cell is given in [32]. 
 
6.4. Radiated immunity, Ei 
In a radiated immunity test, it is the induced voltage that 
may cause malfunctioning of the EUT. Equation (25) 
clearly indicates that this voltage is determined by the 
incident field and by the normalized current 
distribution. In this section, aspects of the incident field 
are considered and in Section 6.5 aspects of the current 
distribution are considered. 

The incident field is the field that would be present 
in absence of the EUT plus its attached cables acting as 
an antenna. Consequently, the specified field strength in 
a radiated immunity test is normally measured and 
adjusted before the placement of the EUT using a small 
probe (negligible interaction with the field source). It is 
not correct to measure the specified field strength using 
a small probe near the EUT, because that probe 
measures the field incident to the probe. The latter field 
may significantly differ from the incident field 
experienced by the EUT, as it is the combination of the 
wanted field and the field reflected from the EUT. The 
field incident to the probe might even be almost zero if 
the desired test field and the reflected field are in anti-
phase. 

After placement of the EUT we need to verify that 
the incident field as such has not changed as a result of a 
possible strong interaction between the EUT and the 
source of the field. Such an effect may be observed by 
comparing the forward power measured via a 
directional coupler, in the connection between the 
generator and antenna emitting the test field during the 
previously mentioned field adjustment, with the power 
measured after the placement of the EUT. If the forward 
power has changed, the desired incident field has 
changed. A first correction is to adjust the generator 
output to a level that results in the original forward 
power. However, from the hybrid theorem it follows 
that this adjustment does not need to be 100% correct, 
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as the field distribution during the field adjustment and 
that after placement of the EUT need not be the same. 
 
6.5. Radiated immunity, It(l)/I0 
Equation (25) also indicates that the normalized current 
distribution in the t-state is of importance. Since that 
distribution is the weighting function of the voltage 
contributions induced by the incident field, resonances 
in that distribution may be noticed in the disturbance 
signal induced in the cable attached to an EUT. An 
example is given in Fig.9, where the maximum (max), 
average (avg) and the minimum (min) value of the 
measured induced CM-current are plotted as a function 
of the frequency of the homogeneous incident field with 
a strength of 1 V/m. Eight EUTs taken from a class of 
electrically small EUTs were tested [21].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 The induced common-mode current measured 

close to an electrically small EUT in the cable 
attached to that EUT, when illuminated by a field 
of 1 V/m (8 EUTs) 

 
Although the average value is about 55 dBµA (a value 
close to the rule of thumb for these EUTs: 1 mA per 
V/m), the curve labelled ‘min’ indicates that resonances 
may cause a minimum in the induced current, so that the 
considered EUT is hardly tested for immunity around 
the resonance frequencies. In other words, a uniform 
and constant incident field does not guarantee that the 
EUT is tested with a constant actual disturbance signal 
(here represented by the CM current). In addition, we 
should expect the resonance frequencies to shift when 
the layout of the cables is changed. If it had been 
possible to let the EUT act as a transmitter, the 
resonances would also have been found, comparable to 
the resonances of a rod antenna. 

In the case of an interference complaint in which a 
product is insufficiently immune to EM fields, it is not 
always possible to solve the problem at the location 
where the product is used. The disturbance field 
strength at that location is measured and the product is 
taken to the test lab to carry out a radiated immunity test 
with that field strength. However, if the CM current 
distribution on the cables attached to that product differs 
significantly in the test situation from that at the 
complaint location, the test might not cover the actual 
complaint. So it is advisable to measure not only the 
field strength at the complaint location, but also the CM 
current on the attached cables (close to the product) and 

to verify whether these currents are (more or less) the 
same in the test house.      
 
6.6. Shielding 
This section addresses the frequently asked question ‘If 
a shield attenuates the field emanating from circuits 
inside that shield by an amount of X dB, are these 
circuits then also shielded by an amount of X dB for 
fields generated outside that shield?’ We can illustrate 
the reasoning behind the answer by the following rather 
simple configuration, that allows the use of simple 
analytical relations. Rigorous approaches based on the 
Lorentz theorem can be found in [25, 33]. In Section 6.7 
the results are also used in an example of interference 
prediction. 
 
  
 
 
 
 
 
 
 
 
 
 
Fig.10 Schematic drawing for use in the application of 

the reciprocity theorems 
 
A tuned λ/2 dipole is located at a distance r in the far-
field of a small loop antenna, as shown in Fig.10. Both 
antennas are located in free space so that antenna 
coupling and reflections do not play a role. A signal 
source {Ug, Rg} can be connected to the loop antenna, 
and a voltmeter (input impedance Rv= Rg) can be 
connected to the λ/2 dipole (internal impedance Za), and 
vice versa. The area of the loop antenna A= πDa

2/4 and 
the internal impedance of that antenna is Zl. The 
orientation of both antennas is such that an optimal 
signal transfer results. 

If the source is connected to the loop antenna and 
the voltmeter to the λ/2 dipole, the voltmeter reading 
Uv1 in the absence of the screen will be given by 

 
 

(30) 
 
 
where λRg/{π(Rg+Za)}is the voltmeter reading in the 
case of an incident field given by the second part of the 
right hand member of Eq.(30), (also see Eq. (27)). In 
that part, AUg/(Rg+Zl) is the magnetic dipole moment of 
the loop antenna, Z0 the far-field wave impedance and 
k= 2π/λ. Next, a spherical screen of radius R, 
Da/2<<R<<{r, λ/2π}, is put around the loop antenna 
such that the loop is in its center. The screen is assumed 
to be in the near field of the loop. Now the voltmeter 
reading is Uv2 and, consequently, the shielding 
effectiveness SH= Uv1/Uv2. Because the sphere also acts 
as a magnetic dipole [25], Uv2 is also described by 
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Eq.(30), although the magnetic dipole moment is now a 
factor SH smaller. 

The next step is to connect the generator to the λ/2 
dipole and the voltmeter to the loop antenna. In the 
absence of the screen Uv3 is measured and in the 
presence of that screen Uv4 is measured. The voltage Uv3 
is given by 

 
 

(31) 
     
 
where Rg/(Rg+Zl) gives the voltage division of the 
voltage µ0ωAH induced by the incident H-field. That 
field is given by the second part of the right hand 
member of Eq.(31), and is easily understood when 
remembering that in the far-field the E-field of a center 
fed tuned λ/2 dipole is given by E= 60I/r= 2Z0/(4πr) so 
that H= 2I/(4πr) and where I is the current entering the 
antenna. 

Using the relations Z0= √(µ0/ε0) and f⋅λ = c = 
1/√(µ0ε0) we can easily verify that Uv1= Uv3. This is not 
a surprising result, since the equivalent network 
between the ports of the two antennas is a Kirchhoff 
network, which means that the associated reciprocity 
theorem directly gives the answer Uv1= Uv3 (see Eq.(8)) 
using Zg= ZL= Rg. However, because the screen is also 
linear and passive, the same theorem shows that Uv2= 
Uv4, and a simple calculation like the one above to 
demonstrate this result is not possible. The last 
statement is particularly true because the dipole field 
arrives as a plane wave at the screen, while the screen is 
in the near-field region of the loop antenna. A 
knowledgeable in the theory may be able to show that 
the Helmholtz theorem about the reversibility of light 
rays [2] is applicable in the described situation.  

In this example the actual shielding effectiveness 
is determined by that of the screen in the near-field of 
the loop antenna. This effectiveness is generally much 
lower, e.g. 40 dB, than that for a plane wave generated 
outside the screen. The example stresses the fact that the 
shielding effectiveness is not entirely a property of the 
shield. It is a property of the shield plus the antennas or 
antenna structures playing a role in the disturbance 
signal transfer.  

In conclusion, the reciprocity theorems give con-
ditions under which the shielding effectiveness is 
reciprocal, and the results are certainly applicable in the 
case of in-band interference. In the case of out-of-band 
disturbances acting on non-linear devices such as 
transistors, the theorems are not formally applicable. 
However, it is still possible to follow the given path to 
estimate the magnitude of the induced signals and to 
consider the consequences of those signals afterwards 
[33]. 
 
6.7. Interference prediction 
The results obtained in Section 6.6 can be applied to 
interference prediction. As an example, the following 
application considers the unwanted signal induced by a 
distant broadcasting transmitter in the antenna of 

Magnetic Resonance Imaging (MRI) equipment used in 
hospitals.  

In the early days of the use of MRI equipment, 
hospitals did not like to have large Faraday cages 
around the equipment. As broadcasting transmitters 
could emit strong fields at the in-band frequencies of the 
MRI equipment, the following question arose ‘Is it 
possible to carry out field strength measurements at the 
location where the MRI equipment is planned to be used 
before the placement of that equipment and to predict 
the level of the disturbance signal induced in the MRI 
antenna?’ The answer was ‘Yes, and with a reasonable 
degree of  confidence’. The following three steps had to 
be followed to find the answer. Figure 10 is again 
applicable: the MRI antenna is the loop antenna and the 
λ/2 dipole is the antenna of the broadcasting transmitter, 
(normally a λ/4 antenna above the earth acting as a 
ground plane). Simple mathematical relations illustrate 
the estimate of the maximum voltage Ui,max that could be 
induced in the loop antenna.  

Step 1: Connect a signal source {Ug, Rg} to the MRI 
antenna located at its normal-use position inside the 
MRI equipment, so that all interactions are properly 
taken into account. Set the frequency of this source to 
that of the (strong) broadcasting field to be expected in 
the hospital. Measure at a distance r1 in the far-field of 
the MRI equipment the field pattern E1(φ), 0°≤φ≤360°, 
emitted by the MRI antenna and measure the current I0

t 
flowing into the loop antenna. This is a measurement 
that can be carried out on the manufacturers premises! 

Step 2:  Determine the maximum Emax of E1(φ) and 
assume that the MRI equipment emits this field in the 
direction of the λ/2 dipole at a distance r from the 
equipment (worst case). This field is proportional to I0

t, 
so Emax= αmaxI0

t and the incident field for the λ/2 dipole 
Et= (αr1I0

t)/r. Application of the hybrid reciprocity 
theorem then gives the voltage induced in the λ/2 
dipole: Ui,λ/2= (αmaxλr1I0

t)/(πr), (see Eq.(26)). Conse-
quently, the transfer impedance Ztr between the loop 
antenna and the λ/2 dipole is given by 

 
(32) 

 
 
and in the given situation Ztr is reciprocal.  

Step 3: During operation of the broadcasting 
transmitter, the input current to its antenna is I0

r and that 
current can be determined from the field strength Er 
measured at the location where the MRI equipment is to 
be installed, by using the well known relation Er= 
60I0

r/r. Using Eq.(32), the estimate of the maximum 
voltage Ui,max induced by the broadcasting transmitter in 
the loop antenna is given by 

 
(33) 

 
By comparing this voltage with the level allowed to 
operate the MRI equipment sufficiently free of 
interference, a decision can be made about whether or 
not a Faraday cage is needed and, if it is,  how much 
attenuation that cage should present.  
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Summary 
In this paper we have discussed the reciprocity theorem 
interrelating two states of one and the same Kirchhoff 
network (linear passive network) as determined by the 
terminations of that network. We have given 
applications improving the understanding of transfer 
impedance, filter and site attenuation measurements. In 
addition, we have used the theorem to facilitate a DM 
voltage to CM current conversion measurement.  

We discussed the reciprocity theorem interrelating 
the electromagnetic fields in two states that can occur in 
one and the same domain in space, and from this 
theorem we derived the hybrid reciprocity theorem. The 
latter theorem was applied to a tuned λ/2 dipole, to the 
measurement of antenna factors, to probe calibration in 
a TEM cell and the uncertainties associated with these 
measurements. We also used the hybrid reciprocity 
theorem to discuss aspects of radiated immunity 
measurements. 

Finally, we used the reciprocity the reciprocity 
theorems in a discussion about the reciprocity of the 
shielding effectiveness and in a simple method to 
estimate the interference potential of a field (at in-band 
frequencies) incident on an antenna.  
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