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The Sixth Most Referenced Transactions Paper
of the EMC Society

Dan Hoolihan, History Committee Chair

INTRODUCTION
As a continuing tribute to the 50th Anniversary Celebration of the EMC Society of the IEEE (1957-2007), we are republish-
ing past top papers from the IEEE Transactions on Electromagnetic Compatibility. In the five previous issues of the EMC Newslet-
ter, we have published the first five most referenced papers, which are respectively:
1. “Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field;”
EMC-22, No. 2, May - 1980, Page 119 by A. K. Agrawal, H. J. Price, and S. H. Gurbaxani.
2. “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic
Field Equations;” EMC-23, No. 4, November - 1981, Page 377 by Gerrit Mur.
3. “Generation of Standard Electromagnetic Fields Using TEM Transmission Cells;” EMC-16, No. 4, November -
1974, Pages 189 -195 by Myron (Mike) L. Crawford.
4. “Frequency Response of Multiconductor Transmission Lines Illuminated by an Electromagnetic Field,” EMC-18,
No. 4, November - 1976, Pages 183-190 by Clayton R. Paul.
5. “Statistical Model for a Mode-Stirred Chamber,” EMC-33, No. 4, November - 1991, Pages 366-370 by Joseph G.
Kostas and Bill Boverie.
In this issue, we are publishing the sixth most-referenced IEEE Transactions on EMC paper of the first fifty years of the EMC
Society. It is written by Henning Harmuth and was a controversial paper when written in the mid-1980s.
The title of the paper is “Correction of Maxwell’s Equations for Signals I” and it was first published in the IEEE Transac-
tions on EMC in Volume 28, No. 4, November 1986.
Again, we hope you take the time to read and appreciate the significance of this historical article.
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Correction of Maxwell’s

Equations for Signals I

HENNING F. HARMUTH, MEMBER, IEEE

Abstract—Electromagnetic wave theory has been based on the concept
of infinitely extended periodic sinusoidal waves ever since Maxwell
published his theory a century ago. On the practical level this worked very
well, but on the theoretical level we always had an indication that
something was amiss. There was never a satisfactory concept of
propagation velocity of signals within the framework of Maxwell’s
theory. The often-mentioned group velocity fails on two accounts, one
being that it is almost always larger than the velocity of light in radio
transmission through the atmosphere; the other being that its derivation
implies a transmission rate of information equal to zero. A closer study
shows that Maxwell’s equations fail for waves with nonnegligible relative
frequency bandwidth propagating in a medium with nonnegligible losses.
The reason is singularities encountered in the course of calculation. The
remedy is the addition of a magnetic current density which may be chosen
zero after one has reached the last singularity but not before.

Key Words—Maxwell’s theory, electromagnetic waves, nonsinusoidal
waves, sequency theory.

Index Code—J3d.

I. INTRODUCTION

LECTROMAGNETIC wave theory has been based on the

concept of infinitely extended periodic sinusoidal waves
ever since Maxwell published his theory a century ago. On the
practical level this worked very well, but on the theoretical
level we always had an indication that something was amiss.
There was never a satisfactory concept of the propagation
velocity! of signals within the framework of Maxwell’s
theory. The often-mentioned group velocity fails on two
accounts, one being that it is almost always larger than the
velocity of light in radio transmission through the atmosphere,
the other that its derivation implies a transmission rate of
information equal to zero.

Beyond the velocity of propagation, we search the literature
in vain for a solution of Maxwell’s equations for a wave with a
beginning and an end, that could represent a signal, propagat-
ing in a lossy medium. One might think the reason is the
practical difficulty of obtaining solutions, but this is only
partly correct. The solutions that we will derive are indeed
mathematically complex and they can be made useful only by
means of computer plots. However, computers have been with
us for 40 years, and for at least half this time they were
sufficiently sophisticated and accessible to do the required
computations. There was also plenty of incentive to study such
solutions. In radar, one would like to know the wave produced
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by the reflection or scattering of a (sinusoidal) pulse rather
than a periodic sinusoidal wave, and in the stealth technology
one would like to study the absorption of pulses rather than
that of infinitely extended periodic waves. Since the enormous
efforts devoted by military scientists to these problems have
not yielded satisfactory results, it is clear that something more
than mathematical and computational difficulties must be the
cause.

A closer study shows that the fault lies with Maxwell’s
equations rather than with their solutions. In general, there can
be no solutions for signals propagating in lossy media.
Expressed more scientifically, Maxwell’s equations fail for
waves with nonnegligible relative frequency bandwidth propa-
gating in a medium with nonnegligible losses.

One way of remedying the failure is by the addition of a
magnetic current density to Maxwell’s equations. But the
remedy is even more surprising than the failure, since it is
generally agreed that magnetic currents have not been ob-
served and it is known from the study of magnetic monopoles
that a magnetic current density can be eliminated or created by
means of a so-called duality transformation. The explanation
of both riddles is singularities encountered in the course of
calculation. If one chooses the current density zero before
reaching the last singularity, one obtains no solution; if one
does so after reaching the last singularity, one gets a solution.

II. MobpIFIED MAXWELL EQUATIONS

The usual form of Maxwell’s equations in the international
system of units is

curl H=0D/0dt+g (1)
—curl E=3dB/3¢ 2)
div D=p
div B=0
D=¢E
B=uH 3

where E and H are the electric and magnetic field strengths, D
and B are the electric and magnetic flux densities, g is the
electric current density, p the electric charge density, € the
permittivity, and p the permeability.

The question has often been raised whether magnetic
currents and charges exist. This matter is usually discussed in
the literature under the heading magnetic monopoles. Jack-
son [1] showed that one may indeed write Maxwell’s equations
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in the form
curl H=3D/dt+g, “)
—curl E=3dB/3t+g, )
div D=p,
div B=p,,
D=¢E
B=uH 6)

where g., 8, pe, and g, stand for electric current density,
magnetic current density, electric charge density, and mag-
netic charge density. One may make a so-called duality
transformation that makes g,, and p,, zero, which brings one
back to Maxwell’s equations [1]. Jackson draws the following
conclusion.

““The invariance of the equations of electrodynamics under
duality transformations shows that it is a matter of convention
to speak of a particle possessing an electric charge, but no
magnetic charge. The only meaningful question is whether or
not all particles have the same ratio of magnetic to electric
charge. If they do, then we can make a duality transformation,
choosing -+ p,, = 0, g, = 0. We then have Maxwell’s
equations as they are usually known’ [1].

When studying the propagation of waves with general time
variation in a medium with ohmic losses, we find that
Maxwell’s equations (1)-(3) have no solution, but the modi-
fied equations (4)-(6) have solutions, even if one makes the
transition g,, = 0 in the end. More precisely, one can make
this transition after reaching a certain singularity in the course
of calculation, but not before.

Maxwell’s equations in the form of (1)~(3) permit two
classes of solutions: a) particular solutions with sinusoidal
time variation and sums of such solutions; and b) solutions
with general time variation of the specialized equations with
£ = 0 almost everywhere, holding for a loss-free medium.
There is no solution in the general case of waves with
nonperiodic time variation propagating in a lossy medium.

The reason why this startling failure of Maxwell’s equations
has not been recognized earlier is that almost all published
solutions assume sinusoidal time variation. For a long time
there were only two important exceptions: the radiation from a
charged particle moving with arbitrary velocity studied by
Schwarzschild [2] and Abraham [3], and the radiation of a
Hertzian electric dipole with a current of arbitrary time
variation discussed in the many editions of the book Theorie
der Elektrizitit (Theory of Electricity) by Abraham ef al. [4]
that apparently evolved from the solution for the moving
charged particle. Only very recently have these solutions for
loss-free media been extended and applied to radio engineer-
ing [5]-[7]. Particularly, the stealth technology and anti-
stealth-radar created interest in the study of the propagation of
(sinusoidal) pulses in lossy or absorbing materials.

ITI. PLanaR WaAVE IN CONDUCTING MEDIUM

The modified Maxwell equations (4)-(6) without electric
and magnetic charges p, and p,,, having constant permittivity

251

€, permeability u, electric conductivity o, and magnetic
conductivity s, assume the following form if the electric and
magnetic Ohm’s laws

g.=oE
Em=sH Q)
are used:
curl H=¢edE/dt+ oE 8)
—curl E=udH/ot+sH (C)
e div E=p div H=0. (10)

Except for the term sH, one obtains the same equations from
Maxwell’s equations (1)-(3). By choosing s = 0 at any stage
of the calculation, we may thus check what result Maxwell’s
equations would have yielded.

Consider a planar transverse electromagnetic (TEM) wave
propagating in the direction y. A TEM wave requires

E,=H,=0 (11)

while a planar wave calls for the following relations:
OE,/dx=0E,/0z=0E,/0x=0E,/3z=0 (12)
0H,/dx=0H,/dz=0H,/dx=93H,/dz=0. 13)

Writing the operator curl in Cartesian coordinates and
introducing the conditions (11)-(13) brings (8) and (9) into the
following form:

—8H,/3y = €dE, /31 + oF, (14)
OH./3y = edE,/d1 + oF, (15)
dE,/dy = udH,/dt + sH, (16)

—OF,/3y = pdH,/dt + sH,. (17)

With the substitutions
E=E,=F,
H=H,=-H, (18)

one may rewrite the two pairs of equations (14) and (17) as
well as (15) and (16) as one pair:

OE/dy+ pdH /9t +sH=0 (19)
dH/dy + €dE/dt + gE=0. (20)

We solve this pair of equations first for the electric field
strength E. This will show that the introduction of the
magnetic conductivity is sufficient to obtain a solution, even
though we will choose s = 0 in the end. In a second paper, we
will calculate the magnetic field strength from the electric field
strength; this will show that the introduction of s is also
necessary to obtain a solution,

Differentiation of (19) with respect to y and of (20) with
respect to ¢ permits the elimination of the magnetic field
strength H. We obtain an equation that contains only the
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electric field strength:
32E/3y? — ued*E/3t — (uo +eS)IE/9t —scE=0. (21)
If E is found from this equation, one may obtain /1 from either
(19) or (20). Equation (20) is readily solved:
H(y, )= — S (IE/0t+0E) dy+H,(1).  (22)

The term H,(f) is an integration constant independent of y.
One may also calculate H(y, ) from (19). This is now an
inhomogeneous ordinary differential equation of first order
with constant coefficients, since dE/dy is a known function:

dH/dt+sp~'H= —p~'8E/dy. 23)
The homogeneous equation is satisfied by
H=_Ce "¢ (24)

and variation of the constant C = C(¢) brings the solution of
the inhomogeneous equation (23)

H(y, t)y=e sr l:—u“ S(&E/ay)e“/“ dt+H[(y):|
(25)

where H,(y) is an integration constant independent of ¢.

A partial differential equation like (21) by itself does not
define a physical problem. One needs, in addition, boundary
and initial conditions. Consider numerous electrodes in the
plane y = 0. We may use them to apply an electric field
strength with the time variation of a step function? S(#):

E@©, 1)=E S()=0,
=E,, for t = 0. (26)

for <0

At the plane y — oo, we have the further boundary condition
E(o, t)="finite. 27

Let E and H be zero for y > 0 at the time ¢ = 0. We have then
the initial conditions

E(y, O=H(y, 0)=0. (28)

If E(y, 0) and H(y, 0) are zero for all values of y > 0, their
derivatives with respect to y must be zero too:

dE(y, 0)/dy=0H(y, 0)/3y=0. (29)

2The step function is a particular solution for transients just as a sinusoidal
function is a particular solution for the steady state. General periodic steady-
state solutions are obtained by means of sums of sinusoidal functions using the
Fourier series. Similarly, general transient solutions are obtained by means of
sums of time-shifted step functions A(i)S(¢ — iAT'), which for AT — dt lead
to the DuHamel integral. This makes the results obtained for the step function
generally applicable for transients that are zero for ¢ < 0 and have an arbitrary
time variation for ¢ = 0. Which transients can be approximated by a sum of
step functions is a mathematical problem of the same type as the approxima-
tion of periodic functions by a Fourier series. Transient electric and magnetic
field strengths in an experimental science can always be approximated. For
more details see [8].

Equations (28) and (29) also imply the initial conditions
0E(y, t)/0t=0H(y, t)/0t=0 (30)

for y > 0 and r = 0 according to (19) and (20).
We assume that the solution of (21) can be written in the
form

E(y, H=Eg(y, H=Elw(y, H+F(y)] (31

where the notation Eg(y, ¢) indicates that the electric field
strength is excited by the electric step function EyS(#) of (26);
it is also possible to use a magnetic step function H,S(¢#) for
excitation, which would lead to the electric field strength

EH(y > t)
Insertion of F(y) into (21) yields the equation

d?F/dy*—soF=0 (32)
with the general solution
F(y)=A00e‘y/L+Ame)'/L, L=(S(7)71/2. (33)

The boundary conditions of (26) and (27) require 4¢; = 0 and
Aoo = 1:

F(y)=e/L, (34)

For the calculation of w(y, ¢) of (31), we observe that the
introduction of the function F(y) transforms the boundary
condition of (26) for £ = Ep into a homogeneous boundary
condition for w

E(0, )=Eyw(0, )+ Ey=F,, fort =20 (35

w(0, 1)=0, for t =z 0 36)
while (27) yields
w(oo, f)=finite. 37
The initial conditions of (28) and (30) yield
w(y, 0)+F(y)=0
w(y, 0)= —e ¥/t (38)
ow(y, 1)/at=0, for =0, y>0. 39

Insertion of (31) into (21) yields for w(y, f) the same equation
as for E(y, 0):

32w/8y? — ued*w/dt* ~ (uo+es)dw/dt—sow=0. (40)

Particular solutions w,(y, f) are obtained by the separation of
variables,

W (¥, D=p(¥W() “4n
0~ 18%p/3y? = pey " 192y /01>
+(po+esH1aY/dt+so= — 2wk)* (42)
which yields two ordinary differential equations

3%0/0y* + 2rr)l =0 (43)
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and

32 /012 + c2(po + es)dy/dt

+[(2mkc)? +sact]y =0, c2=1/pe (44)
with the solutions
e(y)=Aje sin 2wy + Ay cos 2wky (45)
V()= Az exp (vi2)+ Ay exp (v21). (46)
The coefficients y, and v, are the roots of the equation
Y2+ c2(po +esyy + [2mr)? +50]c?=0 7
which we write in the following form:
vi= —a+(a?~ b2, for a2> b?c? (48)
y2=—a—(a’=b%*)"?

vi=—a+j(b*ci—a?)?, for a?<b*c?
Y2= —a—j(b¥?—a?)'?
a=(c¥2)uo+es)=(c/2N(Zo+s/Z)=0/2¢+5/2u
b2=Q2mk)*+so
c=(ue)"'?
Z=(u/e)'?
e=1/Zc
u=2/c.

Note that Z is used as an abbreviation for (u/€)'/?, which is
not the impedance of a conducting medium as defined in the
conventional theory of sinusoidal waves.

The boundary condition (36) requires A;; = 0 in (45). The

particular solution w,(y, 7) thus becomes
wly, =[A; exp (vi)+A; exp (v20)] sin 2mxy. (49)

The general solution w(y, f) is found by making A4; and A,
functions of the wavenumber «, and then integrating over all
possible values of «:

w(r, 0= {14 exp (it)

+ Ay(x) exp (y22)] sin 2wy dk.  (50)
The time derivative dw/d¢ equals
dw/d1 = S: [A, (¥ exp (vi1)
+ Ay()y2 exp (k)] sin 2aky dx. (51)
The initial conditions of (38) and (39) demand
g: A1)+ A;(0)] sin 27k dk= —e—'L  (52)
S:[AI(K)71+A2(K)72] sin 27y di=0.  (53)

44
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These two equations must be solved for the functions A,(x)

and A(x). To this end, consider the Fourier sine transform in
the following form:

& =2 |" £(») sin 27y dy (54)

£=2 | g0 sin 2mey ds.

If we identify 2g(x) first with 4,(x) + A,(x) and then with
A(€)y; + Aak)ys., we obtain from (52) and (53)

A9+ A2 =280 = —4 | e/ sin 2my dy (59)
Ay (y1 + Ax(k)y2=0. (56)
Using the tabulated integral
r e¥ sin 2wky dy:L (&X))
0 Qrr)?+u?
one obtains from (55) with L = (so) /2
A (k) + Ay(k) = — 87w/ [so+ (2wk)?] = —8wx/b?  (58)
and for the limits = 0
A (k) + Ax() = —2/7x. 59

The first reason for the need of a term sH in (9) and g,, in
(5) becomes clear now. Fors = 0, ¢ # 0, and L = oo, the
integral in (55) would not exist. We could have used the
standard method of making sin 27«y integrable by multiplying
with a term e =L and taking the limit 1/L = 0. However, the
physical meaning of this procedure would have remained
unexplained, and the question would be raised why the factor
e~ should be used and not some other factor or method to
obtain integrability. Our approach brings out the physical
significance of the integrability. No problem of integrability is
encountered if Maxwell’s equations are modified by the
introduction of a magnetic current density, and the integrabil-
ity is maintained in the limit of a vanishing magnetic current
density.

Equations (56) and (59) are solved for A,(x) and A,(k):

8 4
AI(K):_# YT <1+_a—> ,
b Y2— Y1 b2 (az_ b2C2)1/2

for a?>b2c?

4mx Jja
e T Gie—ayn)

for a?>< b3c?

8tk 47k a
As()= —— S [ [ ——
2() b2 y1—v b2 < (az_bzcz)1/2>
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for a?>b2c?

4k Jja
=——|14+——,
b2 (b2 — a2

for a?<b?c?, (60)

Insertion of (48) and (60) into (50) yields

! K a
w(y, t)=—e? [SO {<1+_—(¢12—b2c2)‘/2>

- exp [(aZ_bZCZ)l/Zt]

a
+{1- (a2 bc?)V?

- exp [_(az_bZCZ)l/zt]}

@ ja
* SK {(1 + (b2C2 — a2)1/2>

- exp [j(b2c2_ aZ)l/Zt]

o J
+ —(bzcz_az)l/z

. exp [—j(b202—-az)l/2t]}

sin 2wky
b%/47x

sin 2wy

—d 61
b/ 4wk K] ©1)

K=027r) (a?*/c?—sa)'?
b2=(Q2mwk)*+s0
a=(c/2Zo+s/Z).

The imaginary terms in the second integral may be rewritten in
real form by means of the formulas

eld+e/4=2 cos q
—j(efi—e=49)=2 sin ¢

while the first integral can be simplified with the help of
hyperbolic functions:

ei+e9=2ch g
e7—e"1=2 sh q.

One obtains

27K
Wi, D= =2 e {g [ch (a2 = bt
m 0

202 g1/ sin 2
a sh (b*c*—a?) sin 2wky @) d@mx)
(2= b2c)\2 p?

+ S [cos (b —a?)V
2xK

a sin (b*c?2—a?)\V%
(bic?—a?)i”

sin 2wy }
itk ) (62)

S 2wk) d(27nk)

To obtain Eg(y, t) we still have to add F(y) to w(y, f)
according to (31). With (34) we gei

Ec(y, Yy=Egle 7“+w(y, ]
L=(s0)"1"2. (63)

We now make the transition to s = 0. From (48) and (61) we
get

b=p=2mw«
a=a=Zco/2

2aK=a/c=Z0/2. (64)

Equations (62) and (63) become

2 Zs/2
w(y, H=——e o {S ch (a2~ B%?)%
T 0

o sh (@?2—B%?)?%¢t | sin By
(2= B%c?)1”2 8 ag

+S [cos (B%c?— a?) 172t
Zg/2

a sin (B%c2—a?)?t ] sin By
(Bc2—a?)l2 :I 3 dﬁ} (65)

Ee(y, )=El1+w(y, D] (66)

In order to get some understanding of the physical content
of this equation, we observe that the first integral vanishes
when the conductance o approaches zero. We see that o =
Zac/2 also equals zero in this case:

2
Ex(y, 0)=Ey (1 -2
™

= cos Bct sin By d6>
0 B

B 1 = sin B(y+ct)
ko [l”; <50 5 ¥

= sin B(y —ct
+ SO % dB)] . 67)

45



46

HARMUTH: CORRECTION OF MAXWELL’S EQUATIONS I

From a table of integrals we find:

® sin
[P gg=nsa,  for p>0
0 q
=0, for p=0
=—7/2, for p<O0. (68)

Equation (67) thus assumes the following form:

Eg(y, 1)=Ey, for y=0, t=0
=0, for y>0, ct<y
=Ey/2, for y>0, ct=y
=E, for y z 0, ct>y. (69)

This represents a step function with amplitude Ej propagating
with velocity ¢ toward increasing values of y. A look at (21)
shows that for s = 0 and ¢ = 0 it becomes the one-
dimensional wave equation which should yield the result of
(69) for the boundary condition (26), except for the case ¢t =
y when the wave equation yields the result E, rather than Ey/2.
The discrepancy is due to the fact that the Fourier representa-
tion of a function converges to the median (0 + E;)/2, if the
function has a discontinuity with two limits 0 and E, in a point.

Fig. 1(a) shows Eg(y, 1) as function of ¢ in the point y,
while Fig. 1(b) shows it as function of y at the time f.

For ¢ # 0 one may rewrite (65) into a more compact
normalized form. We make the following substitutions:

n=Bc/a=4nk/ Zo= (4wk/o)e/uw)"?
O=at=Zoct/2=at/2¢
t=ay/c=Zay/2=(u/e)*ay/2 (70)

and obtain with

By=n¢
dB=ac'dy
dB/B=dn/y
n=1 for f="Z0/2 (71)
the result
Ep(§, O)=Ell +w(§, 0)] (72)

w(, 6)= —%e“’ {S; [ch (1-n9)'29

sh (1-92)17297 si
+ (1-9% sin £y dn
(1_1]2)1/2 7

+ r [cos n*-1)""%
1

sin (n2—1)"29 ] sin
N : ) & dn | |
(.r, _1)1/2 7
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Eol2 £/

Eg(y,t) —
EE(Y-” -

0 ylc AT 0 AT of
f— e

(a) (b)

Fig. 1. The field strength Eg(y, ) excited by an electric step function in a
loss-free medium (a) at the location y as function of the time variable; and
(b) at the time ¢ as function of the space variable.

F08VE

£ Vg

5 10 15 20 25

Fig. 2. The function Ex(¢, 0)/E,for ¢ = 0,1,2,3, and 6 in the range 0 < 6
= 26. The nonnormalized variables are f = 8/« = (2¢/0)f and y = (¢/
)t = (2/0)(e/p)'%¢. This illustration is based on computer plots by R.
Boules, Department of Physics and Applied Mathematics, Faculty of
Engineering, University of Alexandria, Alexandria, Egypt.

This equation contains only the normalized space and time
variables £ and 6, since the variable n is eliminated by the
integration. All three parameters p, €, and o of (8) and (9) have
been made part of the normalized variables £ and 6. A major
drawback of (72) is that  becomes infinite for ¢ = 0. Hence,
the equation is not well suited for the study of the transition to
the loss-free medium.

Fig: 2 shows computer plots of Er(¢, 6) for the locations §
=ay/c =0,1,2,3 inthe time range 0 < 0 = af < 26. The
step function Eg(0, ) at £ = 0 becomes more and more
distorted as the distance ¢ increases to 1, 2, and 3. However,
there is always a jump at 6 = £; it can be shown analytically
that the derivative is infinite at this point for all finite values of
£. The velocity of propagation of the jump equals £/0 = (ay/
¢)/at or y/t = c. Assuming an infinite signal-to-noise ratio
and detection equipment with infinitely fine resolution, the
propagation velocity of the step function thus equals the
velocity of light. However, we will clearly need an investiga-
tion of finite signal-to-noise ratios and detection equipment
with finite resolution.

The plots of Fig. 2 prove that the modification of Maxwell’s
equations by a magnetic current density is a satisfactory
condition for obtaining a solution representing a wave excited
by an electric step function and propagating in a lossy
medium; the solution can be extended to any transient that can
be represented by a sum of time-shifted step functions. What is
still needed is a proof that the modification by a magnetic
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current density is also a necessary condition. We will show
this in a second paper by calculating the magnetic field
strength Hg(¢, ) corresponding to the electric field strength
Eg(¢, 6) of Fig. 2.

IV. CoNcLUSIONS

Many solutions of Maxwell’s equations have been found for
infinitely extended periodic sinusoidal waves, and a few
solutions were found for nonsinusoidal waves in a loss-free
medium, but none has been found for (sinusoidal) pulses or
generally transients in lossy media, even though this case is of
great practical interest for the reflection or scattering of radar
pulses at the ground or water, and the absorption of radar
pulses by absorbing materials in the stealth technology. It is
shown that a satisfactory condition® for the existence of
solutions for transients in lossy media is the modification of
Maxwell’s equations by the addition of a magnetic current
density. This current density can be chosen zero affer one
reaches a certain singularity in the course of calculation. The
result applies to transients with any time variation, as long as
they can be approximated by a sum of time-shifted step
functions.
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Editor’s note: Not necessarily the only satisfactory condition.

Summary of Reviewers’ Comments and Author’s Replies
on “‘Correction of Maxwell’s Equations for Signals I’

OvERALL COMMENT (BY REVIEWER)

The title of the paper and the abstract are misleading and the
central statements of the paper are invalid. The paper does not
give a correction to Maxwell’s equations nor does it contain
any new ideas.

Electromagnetic wave theory has been based on Maxwell’s
equations and not ‘‘on the concept of infinitely extended,
periodic sinusoidal waves.”” Maxwell’s equations have been
applied with success to problems involving continuous waves
as well as to transients and pulses. The other statements in the

abstract are also not true. There have been satisfactory
treatments of such topics as the propagation velocity of signals
in dispersive media. Of course, in material media, Maxwell’s
equations must be supplemented by constitutive relations
which are based on models of the structure of these materials.
One may question the dispersion relations derived from these
models, but there has been no question about the applicability
of Maxwell’s equations to macroscopic problems.

AUTHOR’S REPLY

I give references [2]-[7] which are about transients of
electromagnetic waves. All of them consider transients in a
loss-free medium. The reviewer claims there have been
satisfactory treatments of such topics as the propagation
velocity of signals in dispersive media, but gives no reference.
The catch may be that I consider a medium with ohmic losses
while the reviewer thinks of a dispersive medium, which may
not be the same (e.g., Kraus and Carver, Electromagnetics,
2nd ed. (New York: McGraw-Hill, 1973), footnote p. 529)
say, ‘‘The waveguide behaves like a lossless dispersive
medium’’). Obviously, my paper must sound wrong if the
distinction between dispersive medium and (ohmic) lossy
medium is not made.

Marsor FLAwW

The main thesis of the paper contains a flaw. As the author
admits (in referring to Jackson), there is no need to introduce
the concept of a magnetic current, although the introduction of
the concept is often useful in solving practical problems with
the aid of the principle of duality. In the particular transient
problem (involving a unit-step input) dealt with in the paper,
the author claims he must use magnetic currents to get a
solution. This is not true. Maxwell’s equations do have
solutions for signals propagating in lossy media. The difficulty
the author encounters does nof lie with Maxwell’s equations
but with the method the author chooses to solve them. Since
the Fourier transform of a step function does not exist, one has
two choices: introduce a convergence factor, or use the
Laplace transform. The author uses the first choice and claims
that this somehow legitimizes the need for a magnetic current.
The second choice makes this unnecessary.

AUTHOR’S REPLY

I am misunderstood to claim that a magnetic current density
must be added to Maxwell’s equations. I only want to claim
that Maxwell’s equations must be modified, and that the
addition of a magnetic current density is a sufficient modifica-
tion. Dirac’s equations and the Klein-Gordon equation are
both possible generalizations of the nonrelativistic Schroe-
dinger equation. Similarly, there may be more than one
possible generalization of Maxwell’s equations.

The reviewer is wrong in making a distinction between
introduction of ‘‘a convergence factor’ and ‘‘use of the
Laplace transform.”’ There is no way of telling whether the
right side of (55) is a Fourier transform with convergence
factor or a Laplace transform. The text following (59) explains
that my approach 1) shows the physical significance of (55)
resulting from the imposition of initial conditions, and 2) it
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Fig. 2. (Taken from Harmuth, ‘‘Propagation Velocity of Electromagnetic
Signals,”’ this issue, pp. 267-272.) Normalized phase velocity v,/c and
group velocity v,/c as function of the normalized frequency we/v for a
conducting medium. For v,/c = 1 at x = 0.25: seawater—f = 225 MHz;
freshwater—f = 56 kHz; ionized layers of atmosphere—f = 50 Hz;
nonionized layers of atmosphere—f < 50 Hz. Propagation constant:

v =lop(joe+ )] =a+j8
a=w{(pe/2)[(1 + 0¥/ w211} /2
B=w{(pe/1 + 0¥/ w222+ 1]} /2

Cde 1 2V2{xx+ (2 DA+ 1)}
Tdp dB/de 2[x+(x*+ D)+ 1)1

Vg

xX=we/o
€= permittivity, p = permeability, o=-conductivity.

Propagation constant y may be found in many books, e.g., Kraus and Carver,
Electromagnetics, 2nd ed. (New York: McGraw-Hill, 1973), p. 404, eq. 9.

explains why this and no other method to obtain convergence
is used; simple introduction of a Laplace transform would
leave both questions unanswered.

GRroup VELOCITY

The author states that group velocity is almost always larger
than velocity of light. This does not sound correct.
AUTHOR’S REPLY

This reviewer relies on his belief. I refer to Fig. 2 of the
third paper of this set (‘‘Propagation Velocity of Electromag-
netic Signals’’) that shows that the group velocity in the
atmosphere is indeed practically always larger than ¢, whether
this sounds correct or not. Enough information is given in Fig.
2 to enable anyone to check my plots, based on the universally
accepted propagation constant.

GRroUP VELOCITY

In the first part of the paper (Section I and the first part of
Section II) the author claims that Maxwell’s equations have
some flaw which results in group velocities greater than the
speed of light. Group velocities greater than the speed of light
are explainable (see Stratton’s book Electromagnetic Theory
(New York: McGraw-Hill, 1941), sections 5.17 and 5.18). The
author should either remove the reference to propagation
velocities or explain why the conventional explanation of
Stratton is invalid.

AUTHOR’S REPLY

There is nothing wrong with a group velocity larger than ¢,
but it is against the special theory of relativity to interpret

257

velocities larger than ¢ as propagation velocity of information
or energy. Maxwell’s equations are Lorentz invariant, even
though they predate the theory of relativity by 20 years.
Stratton’s section 5.18 is wrong because it is based on papers
by Sommerfeld and Brillouin referenced in the third paper of
this set. Sommerfeld and Brillouin obtained their results by
adding assumptions about the atomistic structure of matter to
Maxwell’s theory. This was acceptable in 1914, but today we
know that this calls for quantum electrodynamics which did
not exist in 1914.

ERRORS IN STRATTON

The author also claims that no solutions to Maxwell’s
equations have appeared for signals of finite bandwidth and in
a lossy medium. I refer the author to section 5 of Stratton, and
in particular sections 5.9-5.11. The work of Stratton does not
necessarily invalidate the author’s work. However, he should
either drop/modify his claims or point out the errors in
Stratton. The author may also want to look at J. Van Bladel’s
book FElectromagnetic Fields (New York: McGraw-Hill,
1964), chapter 8.

AUTHOR’S REPLY

The calculation by Stratton in section 5.9 is indeed faulty.
He uses particular sinusoidal solutions, as I do, to satisfy
Maxwell’s equations, and he uses a Fourier transform (p. 297,
eq. 64) to satisfy the boundary conditions, as I do, but he does
nothing to satisfy the initial conditions for a signal, £ = 0, H
= O for ¢ = 0. His solutions are periodically repeated pulses,
not transients or signals. My book [8] treats this point in great
detail since the same mistake is made almost universally, but it
is difficult to include so many details in these three papers. The
closest approach to my results by Stratton is in section 5.13, p.
320 (162); only the electric field strength due to an electric
excitation force is calculated, but not the associated magnetic
field strength nor the field strengths due to a magnetic
excitation force. The equation is based on the assumption of a
uniquely defined function and its first derivative in the lines
following (146), p. 318, which cannot be met by a signal that
must be zero for ¢ < 0. (At least one derivative must be two-
valued or undetermined at ¢ = 0.) This comment is readily
understandable for signals represented by a step function S(¥)
or a linear ramp function S(f)# for small values of ¢, but the
approach fails generally for signals of the form S(#)¢” for small
values of 7. Anyone trying to derive solutions of Maxwell’s
equations by means of a straightforward Laplace transforma-
tion should carefully read section 5.13 and avoid its error. A
Taylor series expansion can never approximate the beginning
of a signal, regardless of the number of terms used! The
reviewer’s expression ‘‘signals of infinite bandwidth’’ is a
contradiction in terms. (See ‘‘Author’s Reply’’ in ‘‘Propaga-
tion Velocity of Electromagnetic Signals,’’ this issue, p. 271,
end of first paragraph.)

TRANSITION FOR § = 0

The second part of the paper presents the author’s derivation
which leads to the assertion that the addition of magnetic
currents is a sufficient condition for Maxwell’s equations
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(55), which the author says is not defined for s = 0 unless one
takes a limiting process. I believe the derivation does contain
at least one possible problem. The solution for F(y) in (33) is
written as the sum of two exponentials. This solution is valid
provided s is not zero. Thus the author’s solution only applies
for nonzero s, and it is not meaningful to put s = 0 into (55).

In summary, the author should: a) consider modifying his
original claims based on section 5 of Stratton; and b) show
how the solution is modified if F(y) = Ay + B (A4, B
constants) in (33).

AUTHOR’S REPLY

The reviewer is correct that (55) is of crucial importance.
However, I do not see why (33)—or perhaps (34)—prevents
one from making the transition s = 0. From (34), one has exp
(—=y/L) = exp (- y~/50), which becomes 1 for s = 0; hence
(34) permits the limit s = 0. If we take s = 0 in (34), we get
no solution in (55). The transition s — 0 is only possible after
one passes the last singularity, equation (55) for the electric
field strength; for the magnetic field strength one must
maintain s well into the following paper.

ALTERNATE CALCULATION

Starting with the author’s equation (21) with the magnetic
current omitted, we have

32E/3y? — pued?E/ 01 — podE/dr=0.

Let E(y, s) be the Laplace transform of E(y, f); then the
transform of the above equation is

82E/8y* — pe(st+so/e)E=0.

The integrand has a simple pole at s = 0 and branch points
ats = Oand s = —o/e. Since U(s) — 1 when |s| — oo, the
Bromwich contour can be closed by a semicircle in the left
half-plane for ¢ < y/c and by a semicircle in the right half-
plane for ¢t > y/c. Inthe first case, E(y, £) = 0. In the second
case, the pole contribution gives the first term of (66). The
branch cut along the real axis betweens = Oands = —o/¢ =

— 2« contributes a term

_E SZ“ x~1 exp (—xt) sin [(¥/c)VxQRa—x)] dx.

Ky

The substitution 8¢ = Qo — ¥) orx = a+va? — Bic?
(where the upper sign must be used for & < x < 2« and the
lower sign for 0 < x < «) leads to the author’s first integral in
(65)—except that the roles of the hyperbolic cosine and sine
are interchanged. The branch cut contribution vanishes for
zero conductivity. It is not clear how the second integral in
(65) arises or why it is needed. The step response is already
taken care of in the first term of (66).

By using the shifting theorem and then the initial-value
theorem on E ( y, s), the step at £ = y/c can be shown to be E,
exp (— ¢) in the author’s notation. For ¢ = 1, 2, 3 the values of
exp (—e) are 0.3678, 0.1353, and 0.0498, respectively. The
values in Fig. 2 show some computational error. On the other
hand, the error may be due to the fact that (66) is not correct.

AUTHOR’S REPLY

The reviewer’s attempt to calculate my result—done without
reference to an accepted mathematical method such as
Fourier’s method of standing waves used by me—yields a
result different from mine. Does this result satisfy the initial
conditions £ = 0, H = 0 for # = 0 as my result does? It is a
common mistake to forget about the initial conditions and thus
obtain a result for periodically repeated pulses rather than one
pulse. The reviewer claims—without reference or proof—that
his result is correct and mine is wrong, but this is, of course,
the whole point of publishing my paper.

A strong argument for the correctness of my results are the
plots of Fig. 2 of this paper, which were done independently at
two different universities to reduce the probability of mistake.
To obtain by mistake functions that are zero for ¢ < y/c and
then have a jump is quite improbable. To bolster the case of
improbability, we have the plots in Fig. 1 of the following
paper, and four more independent sets of plots in my book
Propagation of Nonsinusoidal Electromagnetic Waves [8].
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